Characteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs

Shaban Sedghi ${ }^{a}$, Dae-Won Lee ${ }^{b, *}$, Nabi Shobe ${ }^{c}$
${ }^{a}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
${ }^{b}$ Department of Mathematics, Yonsei University, Seoul 120-749, Republic of Korea.
${ }^{c}$ Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran.
E-mail: sedghi_gh@yahoo.com, sedghi.gh@qaemshahriau.ac.ir
E-mail: daewonlee@yonsei.ac.kr E-mail: nabi_shobe@yahoo.com

Abstract

Let $G(V, E)$ be a graph. The common neighborhood graph (congraph) of G is a graph with vertex set V, in which two vertices are adjacent if and only if they have a common neighbor in G. In this paper, we obtain characteristics of congraphs under graph operations; Graph union, Graph cartesian product, Graph tensor product, and Graph join, and relations between Cayley graphs and its congraphs.

Keywords: Common Neighborhood Graph, Cayley graph, Graph operation.

2010 Mathematics Subject Classification: 05C75, 05C50.

1. Introduction

The graphs considered in this paper are assumed to be connected and simple. Let G be such a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by \bar{G}

[^0]the complement of the graph G. As usual, C_{n} and K_{n} are cycle and complete graph with n vertices, respectively.

The neighborhood of a vertex v is the set of all vertices u such that they are the endpoints of the same edge and denoted by $N(v)$. Denote by $\overline{N(v)}$ the complement of set $N(v)$. The degree of a vertex v, denoted by $\operatorname{deg}(v)$, is the number of neighbors of v, that is $\operatorname{deg}(v)=|N(v)|$.

Let G be a simple graph with vertex set $V(G)$. The common neighborhood graph (congraph) of G, denoted by $\operatorname{con}(G)$, is the graph with $V(\operatorname{con}(G))=$ $V(G)$, in which two vertices are adjacent if they have a common neighbor in G, that is,

$$
x y \in E(\operatorname{con}(G)) \Longleftrightarrow N(x) \cap N(y) \neq \emptyset \text { where } x, y \in V(G) .
$$

The basic concept of congraphs came from the theory of graph energy [1,10], and some basic properties of congraphs have been obtained $[1,3,9]$.

There are several Graph operations which generate new graphs from old ones.

Definition 1.1. Let G_{1} and G_{2} be two graphs.
(1) Graph intersection operation of G_{1} and G_{2}, denoted by $G_{1} \cap G_{2}$, is a graph with $V\left(G_{1} \cap G_{2}\right)=V\left(G_{1}\right) \cap V\left(G_{2}\right)$ and $E\left(G_{1} \cap G_{2}\right)=E\left(G_{1}\right) \cap$ $E\left(G_{2}\right)[2]$.
(2) Graph union operation of G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is a graph with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$ [2].
(3) Graph cartesian product of G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, is a graph with $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(u, v)\left(u^{\prime}, v^{\prime}\right) \in E\left(G_{1} \times G_{2}\right)$ if $u=u^{\prime}$, then $v v^{\prime} \in E\left(G_{2}\right)$ or if $v=v^{\prime}$, then $u u^{\prime} \in E\left(G_{1}\right)[8]$.
(4) Graph tensor product of G_{1} and G_{2}, denoted by $G_{1} \otimes G_{2}$, is a graph with the vertex-set $V\left(G_{1}\right) \times V\left(G_{2}\right)$. For $u, v \in V\left(G_{1}\right)$ and $x, y \in V\left(G_{2}\right)$, (u, x) is adjacent to (v, y) in $G_{1} \otimes G_{2}$ if $u v \in E\left(G_{1}\right)$ and $x y \in E\left(G_{2}\right)$ [15].
(5) If $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, graph join operation of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is a graph with $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1}+\right.$ $\left.G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}[8]$.

Let G be a non-trivial group and let S be a subset of $G-\{e\}$ with $S=$ $S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$. The Cayley graph of G denoted by $\operatorname{Cay}(G: S)$ is a graph with vertex set G and two vertices a and b are adjacent if $a b^{-1} \in S$. The study of Cayley graphs of the symmetric group generated by transpositions is interesting (See [7]).

Cayley graphs of finitely generated groups are a fundamental concept in group theory. They were introduced by Cayley [4] for finite groups and Dehn [5] for infinite groups. Many deep results in group theory use Cayley graphs in an essential way, see e.g. $[6,11,12,14]$. Moreover, Cayley graphs turned out to be a link to several other fields in mathematics and theoretical computer science, e.g., automata theory, topology, and graph theory.

This paper is organized as follows: in section 2, we obtain some properties of congraphs under graph operations; Graph join, Graph union, Graph cartesian product, and Graph tensor product and in section 3, we give some relations between Cayley graphs and its congraphs.

2. Characteristics of Congraph on Graph Operations

Lemma 2.1. Let $G(V, E)$ be a simple graph with n vertices and m edges. In the common neighborhood graph (congraph) of G, for every $v \in V$ we have:
(1) $\operatorname{deg}_{\text {con }(G)}(v)=\left|\cup_{u \in N(v)} N(u)-\{v\}\right|=\left|N_{\text {con }(G)}(v)\right|$. Also, if $N(u) \cap$ $N(w)=\{v\}$ then for every $u, w \in N(v)$, we have $\operatorname{deg}_{\text {con }(G)}(v)+$ $\operatorname{deg}_{G}(v)=\sum_{u_{i} \in N(v)} \operatorname{deg}_{G}\left(u_{i}\right)$.
(2) For every $u, v \in V(G)$, if $\operatorname{deg}(u)+\operatorname{deg}(v)>n$, then $\operatorname{con}(G)=K_{n}$.

Proof.
$u \in N_{\operatorname{con}(G)}(v) \quad \Longleftrightarrow \quad u v \in E(\operatorname{con}(G))$

$$
\begin{aligned}
& \Longleftrightarrow \quad N(u) \cap N(v) \neq \emptyset \text { hence there exists } a \in N(v) \text { and } a \in N(u) \\
& \Longleftrightarrow \quad a \in N(v) \text { and } u \in N(a) .
\end{aligned}
$$

That is $N_{\text {con }(G)}(v)=\cup_{u \in N(v)} N(u)-\{v\}$.
Hence,

$$
\begin{aligned}
\operatorname{deg}_{\operatorname{con}(G)}(v) & =\left|\cup_{u_{i} \in N(v)} N\left(u_{i}\right)-\{v\}\right| \\
& =\left|\cup_{u_{i} \in N(v)}\left(N\left(u_{i}\right)-\{v\}\right)\right| \\
& =\sum_{u_{i} \in N(v)}\left|N\left(u_{i}\right)-\{v\}\right| \\
& =\sum_{u_{i} \in N(v)}\left(\left|N\left(u_{i}\right)\right|-1\right) \\
& =\sum_{u_{i} \in N(v)} d e g_{G}\left(u_{i}\right)-|N(v)| \\
& =\sum_{u_{i} \in N(v)} d e g_{G}\left(u_{i}\right)-\operatorname{deg} g_{G}(v) .
\end{aligned}
$$

Therefore, $\operatorname{deg}_{\text {con }(G)}(v)+\operatorname{deg}_{G}(v)=\sum_{u_{i} \in N(v)} \operatorname{deg} g_{G}\left(u_{i}\right)$.
(2) It is enough to show that for every $u, v \in V$ we have $N(u) \cap N(v) \neq \emptyset$. Otherwise, we have

$$
n \geq|N(u) \cup N(v)|=|N(u)|+|N(v)|=\operatorname{deg}(u)+\operatorname{deg}(v)>n
$$

which is a contradiction. Hence, it follows that $u v \in E(\operatorname{con}(G))$, that is, $\operatorname{con}(G)=K_{n}$.

Corollary 2.2. Let $G(V, E)$ be a graph with n vertices and m edges and have not any cycle of order 4. Also, let con (G) be a graph with n vertices and m^{\prime} edges the congraph of G. Then,

$$
m^{\prime}=\frac{1}{2} M_{1}(G)-m
$$

where $M_{1}(G)$ stands for the first Zagreb index, defined as $M_{1}(G)=\sum_{v_{i} \in V} \operatorname{deg}^{2}\left(v_{i}\right)$
Proof. For every $u, w \in N(v)$ we have $v \in N(u) \cap N(w)$. Now, we show that $N(u) \cap N(w)=\{v\}$. For, if there exist $a \in N(u) \cap N(w)$ such that $a \neq v$, it follows that $a u, v u, a w, v w \in E(G)$, that is, we have a cycle of order 4, which is a contradiction. Hence, by Lemma 2.1 we have $\operatorname{deg}_{\operatorname{con}(G)}\left(v_{i}\right)+\operatorname{deg}_{G}\left(v_{i}\right)=$ $\sum_{u_{j} \in N\left(v_{i}\right)} \operatorname{deg}_{G}\left(u_{j}\right)$. Thus,

$$
\sum_{v_{i} \in V} d e g_{\operatorname{con}(G)}\left(v_{i}\right)+\sum_{v_{i} \in V} d e g_{G}\left(v_{i}\right)=\sum_{v_{i} \in V} \sum_{u_{j} \in N\left(v_{i}\right)} d e g_{G}\left(u_{j}\right)
$$

it follows that

$$
2 m^{\prime}+2 m=\sum_{v_{i} \in V} d e g^{2}\left(v_{i}\right)
$$

Therefore,

$$
m^{\prime}=\frac{1}{2} \sum_{v_{i} \in V} d e g^{2}\left(v_{i}\right)-m=\frac{1}{2} M_{1}(G)-m
$$

Theorem 2.3. Let G_{1} and G_{2} be two graphs of order n and m respectively. If G_{1} or G_{2} is connected then $\operatorname{con}\left(G_{1}+G_{2}\right)=K_{n+m}$.

Proof. Let $x, y \in V_{1} \cup V_{2}$ then we show that $x y \in E\left(\operatorname{con}\left(G_{1}+G_{2}\right)\right)$, that is, $N_{G_{1}+G_{2}}(x) \cap N_{G_{1}+G_{2}}(y) \neq \emptyset$. For, if $x, y \in V_{1}$ then it is easy to see that $\left(N_{G_{1}}(x) \cup V_{2}\right) \cap\left(N_{G_{1}}(y) \cup V_{2}\right) \neq \emptyset$. Similarly, if $x, y \in V_{2}$ then $\left(N_{G_{2}}(x) \cup V_{1}\right) \cap$ $\left(N_{G_{2}}(y) \cup V_{1}\right) \neq \emptyset$. Now, if $x \in V_{1}$ and $y \in V_{2}$ then $\left(N_{G_{1}}(x) \cup V_{2}\right) \cap\left(N_{G_{2}}(y) \cup\right.$ $\left.V_{1}\right) \neq \emptyset$, since at least one of G_{1} or G_{2} is connected. Therefore, for every $x, y \in V_{1} \cup V_{2}$ we have $x y \in E\left(\operatorname{con}\left(G_{1}+G_{2}\right)\right)$, hence $\operatorname{con}\left(G_{1}+G_{2}\right)=K_{n+m}$.

Theorem 2.4. Let G_{1} and G_{2} be two graphs. Then $\operatorname{con}\left(G_{1} \otimes G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \times\right.$ $\left.\operatorname{con}\left(G_{2}\right)\right) \cup\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)$.

Proof. Let $(x, y),(u, v) \in V\left(G_{1} \otimes G_{2}\right)$. If $(x, y)(u, v) \in E\left(\operatorname{con}\left(G_{1} \otimes G_{2}\right)\right)$ then $N_{G_{1} \otimes G_{2}}(x, y) \cap N_{G_{1} \otimes G_{2}}(u, v) \neq \emptyset$.

$$
\begin{aligned}
\emptyset \neq N_{G_{1} \otimes G_{2}}(x, y) \cap N_{G_{1} \otimes G_{2}}(u, v) & =\left(N_{G_{1}}(x) \times N_{G_{2}}(y)\right) \cap\left(N_{G_{1}}(u) \times N_{G_{2}}(v)\right) \\
& =\left(N_{G_{1}}(x) \cap N_{G_{1}}(u)\right) \times\left(N_{G_{2}}(y) \cap N_{G_{2}}(v)\right),
\end{aligned}
$$

i.e.

$$
\begin{array}{ll}
& N_{G_{1}}(x) \cap N_{G_{1}}(u) \neq \emptyset \wedge y=v \text { or } N_{G_{2}}(y) \cap N_{G_{2}}(v) \neq \emptyset \wedge x=u \\
\text { or } & N_{G_{1}}(x) \cap N_{G_{1}}(u) \neq \emptyset \wedge N_{G_{2}}(y) \cap N_{G_{2}}(v) \neq \emptyset .
\end{array}
$$

Hence,
$x u \in E\left(\operatorname{con}\left(G_{1}\right)\right), y=v$ or $y v \in E\left(\operatorname{con}\left(G_{2}\right)\right), x=u$ or $x u \in E\left(\operatorname{con}\left(G_{1}\right)\right), y v \in E\left(\operatorname{con}\left(G_{2}\right)\right)$
which means
$(x, y)(u, v) \in E\left(\operatorname{con}\left(G_{1}\right) \times \operatorname{con}\left(G_{2}\right)\right)$ or $(x, y)(u, v) \in E\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)$.

Therefore,

$$
\operatorname{con}\left(G_{1} \otimes G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \times \operatorname{con}\left(G_{2}\right)\right) \cup\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)
$$

Theorem 2.5. Let G_{1} and G_{2} be two graphs. Then $\operatorname{con}\left(G_{1} \times G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \times\right.$ $\left.\operatorname{con}\left(G_{2}\right)\right) \cup\left(G_{1} \otimes G_{2}\right)$.

Proof. Let $(x, y),(u, v) \in V\left(G_{1} \times G_{2}\right)$. Then

$$
\begin{aligned}
& (x, y)(u, v) \in E\left(\operatorname{con}\left(G_{1} \times G_{2}\right)\right) \\
\Longleftrightarrow & N_{G_{1} \times G_{2}}(x, y) \cap N_{G_{1} \times G_{2}}(u, v) \neq \emptyset \\
\Longleftrightarrow & \left\{\left(x \times N_{G_{2}}(y)\right) \cup\left(N_{G_{1}}(x) \times y\right)\right\} \cap\left\{\left(u \times N_{G_{2}}(v)\right) \cup\left(N_{G_{1}}(u) \times v\right)\right\} \neq \emptyset .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(x \times N_{G_{2}}(y)\right) \cap\left(u \times N_{G_{2}}(v)\right) \cup\left(x \times N_{G_{2}}(y)\right) \cap\left(N_{G_{1}}(u) \times v\right) \\
& \cup \quad\left(N_{G_{1}}(x) \times y\right) \cap\left(u \times N_{G_{2}}(v)\right) \cup\left(N_{G_{1}}(x) \times y\right) \cap\left(N_{G_{1}}(u) \times v\right) \neq \emptyset .
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
& \left(x \times N_{G_{2}}(y)\right) \cap\left(u \times N_{G_{2}}(v)\right) \neq \emptyset \\
\Longleftrightarrow & x=u \wedge N_{G_{2}}(y) \cap N_{G_{2}}(v) \neq \emptyset \Longleftrightarrow x=u \wedge y v \in E\left(\operatorname{con}\left(G_{2}\right)\right) \\
\text { or } & \\
\Longleftrightarrow & \left(x \times N_{G_{2}}(y)\right) \cap\left(N_{G_{1}}(u) \times v\right) \neq \emptyset \\
\Longleftrightarrow & x \in N_{G_{1}}(u) \wedge v \in N_{G_{2}}(v) \neq \emptyset \Longleftrightarrow x u \in E\left(G_{1}\right) \wedge y v \in E\left(G_{2}\right) \\
\text { or } & \\
\Longleftrightarrow & \left(N_{G_{1}}(x) \times y\right) \cap\left(u \times N_{G_{2}}(v)\right) \neq \emptyset \\
\Longleftrightarrow & u \in N_{G_{1}}(x) \times y \in N_{G_{2}}(v) \Longleftrightarrow x u \in E\left(G_{1}\right), y v \in E\left(G_{2}\right)
\end{array}
$$

or

$$
\Longleftrightarrow \quad\left(N_{G_{1}}(x) \times y\right) \cap\left(N_{G_{1}}(u) \times v\right) \neq \emptyset
$$

$$
\Longleftrightarrow y=v \wedge N_{G_{1}}(u) \cap N_{G_{1}}(x) \neq \emptyset \Longleftrightarrow y=v, x u \in E\left(\operatorname{con}\left(G_{1}\right)\right)
$$

Therefore, for every condition we get:

3. Relations Between Cayley Graph and its Congraph

Let $\operatorname{Cay}(G: S)$ be a Cayley graph. Then,

$$
\begin{aligned}
N(e) & =\{x \in G \mid\{x, e\}=x e \in E\} \\
& =\left\{x \in G \mid x e^{-1}=x \in S\right\}=S
\end{aligned}
$$

Thus, $\operatorname{deg}(e)=|N(e)|=|S|$. It is easy to see that $N(x)=N(e) \cdot x=S \cdot x$ for each $x \in G$.

Theorem 3.1. [13][Theorem 2.4.] If $\operatorname{Cay}\left(G: S_{1}\right)$ and $\operatorname{Cay}\left(G: S_{2}\right)$ are Cayley graphs. Then
(1) $\operatorname{Cay}\left(G: S_{1}\right) \cup \operatorname{Cay}\left(G: S_{2}\right)=\operatorname{Cay}\left(G: S_{1} \cup S_{2}\right)$,
(2) $\operatorname{Cay}\left(G: S_{1}\right) \cap \operatorname{Cay}\left(G: S_{2}\right)=\operatorname{Cay}\left(G: S_{1} \cap S_{2}\right)$.

Lemma 3.2. Let Cay $(G: S)$ be a Cayley graph. Then

$$
\operatorname{con}(\operatorname{Cay}(G: S))=\operatorname{Cay}\left(G: S^{2}-\{e\}\right)
$$

$$
\begin{aligned}
& (x, y)(u, v) \in E\left[\operatorname{con}\left(G_{1}\right) \times \operatorname{con}\left(G_{2}\right)\right] \text { or }(x, v)(y, v) \in E\left(G_{1} \otimes G_{2}\right) \\
& \Longleftrightarrow \quad(x, y)(u, v) \in E\left[\operatorname{con}\left(G_{1}\right) \times \operatorname{con}\left(G_{2}\right) \cup E\left(G_{1} \otimes G_{2}\right)\right] .
\end{aligned}
$$

Proof. Let $\Gamma(V, E)=\operatorname{con}(\operatorname{Cay}(G: S)), \Gamma^{\prime}\left(V^{\prime}, E^{\prime}\right)=\operatorname{Cay}\left(G: S^{2}-\{e\}\right)$. It is obvious that $V=V^{\prime}$. Let $x, y \in V$, then

$$
\begin{aligned}
x y \in E & \Longleftrightarrow N_{\operatorname{Cay}(G: S)}(x) \cap N_{\operatorname{Cay}(G: S)}(y) \neq \emptyset \Longleftrightarrow(S x) \cap(S y) \neq \emptyset \\
& \Longleftrightarrow \text { there exists } a \in(S x) \cap(S y) \Longleftrightarrow a=s_{1} x \text { and } a=s_{2} y \\
& \Longleftrightarrow s_{1} x=s_{2} y \Longleftrightarrow e \neq x y^{-1}=s_{1}^{-1} s_{2} \in S^{-1} \cdot S=S \cdot S=S^{2} \\
& \Longleftrightarrow x y \in E^{\prime},
\end{aligned}
$$

for some $s_{1}, s_{2} \in S$.

By Lemma 3.2 we have the following corollary.

Corollary 3.3. Let Cay $(G: S)$ be a Cayley graph. Then

$$
\operatorname{con}(\operatorname{con}(\operatorname{Cay}(G: S)))=C a y\left(G: S^{4}-\{e\}\right)
$$

In general, we know that $\operatorname{con}\left(G_{1} \cup G_{2}\right) \neq \operatorname{con}\left(G_{1}\right) \cup \operatorname{con}\left(G_{2}\right)$ and also $\operatorname{con}\left(G_{1} \cap\right.$ $\left.G_{2}\right) \neq \operatorname{con}\left(G_{1}\right) \cap \operatorname{con}\left(G_{2}\right)$. But in the following theorem, we show that the equalities hold for a special condition.

Theorem 3.4. Let $G_{1}=\operatorname{Cay}\left(G: S_{1}\right)$ and $G_{2}=\operatorname{Cay}\left(G: S_{2}\right)$ be two Cayley graphs such that $\left(S_{1} \cup S_{2}\right)^{2}-\{e\}=\left(S_{1}^{2}-\{e\}\right) \cup\left(S_{2}^{2}-\{e\}\right)$. Then

$$
\operatorname{con}\left(G_{1} \cup G_{2}\right)=\operatorname{con}\left(G_{1}\right) \cup \operatorname{con}\left(G_{2}\right)
$$

Also, if $\left(S_{1} \cap S_{2}\right)^{2}-\{e\}=\left(S_{1}^{2}-\{e\}\right) \cap\left(S_{2}^{2}-\{e\}\right)$, then

$$
\operatorname{con}\left(G_{1} \cap G_{2}\right)=\operatorname{con}\left(G_{1}\right) \cap \operatorname{con}\left(G_{2}\right)
$$

Proof. By Lemma 3.2 and Theorem 3.1 we have:

$$
\begin{aligned}
\operatorname{con}\left(G_{1} \cup G_{2}\right) & =\operatorname{con}\left(\operatorname{Cay}\left(G: S_{1}\right) \cup \operatorname{Cay}\left(G: S_{2}\right)\right) \\
& =\operatorname{con}\left(\operatorname{Cay}\left(G: S_{1} \cup S_{2}\right)\right) \\
& =\operatorname{Cay}\left(G:\left(S_{1} \cup S_{2}\right)^{2}-\{e\}\right) \\
& =\operatorname{Cay}\left(G:\left(S_{1}^{2}-\{e\}\right) \cup\left(S_{2}^{2}-\{e\}\right)\right) \\
& =\operatorname{Cay}\left(G: S_{1}^{2}-\{e\}\right) \cup \operatorname{Cay}\left(G: S_{2}^{2}-\{e\}\right) \\
& =\operatorname{con}\left(\operatorname{Cay}\left(G: S_{1}\right)\right) \cup \operatorname{con}\left(\operatorname{Cay}\left(G: S_{2}\right)\right) \\
& =\operatorname{con}\left(G_{1}\right) \cup \operatorname{con}\left(G_{2}\right) .
\end{aligned}
$$

Also, by Lemma 3.2 and Theorem 3.1 we have:

$$
\begin{aligned}
\operatorname{con}\left(G_{1} \cap G_{2}\right) & =\operatorname{con}\left(\operatorname{Cay}\left(G: S_{1}\right) \cap \operatorname{cay}\left(G, S_{2}\right)\right) \\
& =\operatorname{con}\left(\operatorname{Cay}\left(G: S_{1} \cap S_{2}\right)\right) \\
& =\operatorname{Cay}\left(G:\left(S_{1} \cap S_{2}\right)^{2}-\{e\}\right) \\
& =\operatorname{Cay}\left(G:\left(S_{1}^{2}-\{e\}\right) \cap\left(S_{2}^{2}-\{e\}\right)\right) \\
& =\operatorname{Cay}\left(G: S_{1}^{2}-\{e\}\right) \cap \operatorname{Cay}\left(G: S_{2}^{2}-\{e\}\right) \\
& =\operatorname{con}\left(\operatorname{Cay}\left(G: S_{1}\right)\right) \cap \operatorname{con}\left(\operatorname{Cay}\left(G: S_{2}\right)\right) \\
& =\operatorname{con}\left(G_{1}\right) \cap \operatorname{con}\left(G_{2}\right) .
\end{aligned}
$$

Acknowledgments

The authors are grateful to the anonymous referees for their careful reading of this paper and constructive corrections and valuable comments on this paper, which have considerably improved the presentation of this paper.

References

1. A. Alwardi, B. Arsic, I. Gutman, N. D. Soner, The common neighborhood graph and its energy, Iran. J. Math. Sci. Inf., $7(2)$, (2012) 1-8.
2. J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Springer, 2008.
3. A. S. Bonifacio, R. R. Rosa, I. Gutman, N. M. M. de Abreu, Complete common neighborhood graphs, Proceedings of Congreso Latino-Iberoamericano de Investigaci on Operativa and Simposio Brasileiro de Pesquisa Operacional, (2012), 4026-4032.
4. A. Cayley, On the theory of groups., Proceedings of the London Mathematical Society, 9(1), (1878), 126-133.
5. M. Dehn, Duber die Toplogie des dreidimensionalen Raumes, Mathematische Annalen, 69(1), (1910), 137-168. In German.
6. W. Dicks, M. J. Dunwoody, Groups Acting on Graphs, Cambridge University Press, 1989.
7. J. Friedman, On Cayley graphs on the symmetric group generated by transpositions, Combinatorica, 20(4), (2000), 505-519.
8. F. Harary, Graph Theory, Addison-Wesley, Reading, 1971.
9. M. Knor, B. Lužar, R. Škrekovski, I. Gutman, On Wiener Index of Common Neighborhood Graphs, MATCH Commun. Math. Comput. Chem., 72, (2014), 321-332.
10. X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
11. R. C. Lyndon, On Dehn's algorithm, Mathematical Annales, 166(3), (1966), 208-228.
12. J.P. Serre, Trees, Springer, 1980.
13. M.H. Shahzamanian, M. Shirmohammadi, B. Davvaz, Roughness in Cayley graphs, Information Sciences, 180, (2010), 3362-3372.
14. J. R. Stallings, Group Theory and Three-Dimensional Manifolds, Number 4 in Yale Mathematical Monographs. Yale University Press, 1971.
15. A. N. Whitehead, B. Russell. Principia Mathematica, Cambridge University Press, 1912.

[^0]: *Corresponding Author
 Received 7 March 2016; Accepted 15 July 2019
 ©2020 Academic Center for Education, Culture and Research TMU

