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Abstract. Let G(V,E) be a graph. The common neighborhood graph
(congraph) of G is a graph with vertex set V , in which two vertices are
adjacent if and only if they have a common neighbor in G. In this paper,
we obtain characteristics of congraphs under graph operations; Graph
union, Graph cartesian product, Graph tensor product, and Graph join,
and relations between Cayley graphs and its congraphs.
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1. Introduction

The graphs considered in this paper are assumed to be connected and simple.
Let G be such a graph with vertex set V (G) and edge set E(G). Denote by G
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the complement of the graph G. As usual, Cn and Kn are cycle and complete
graph with n vertices, respectively.

The neighborhood of a vertex v is the set of all vertices u such that they
are the endpoints of the same edge and denoted by N(v). Denote by N(v) the
complement of set N(v). The degree of a vertex v, denoted by deg(v), is the
number of neighbors of v, that is deg(v) = |N(v)|.

Let G be a simple graph with vertex set V (G). The common neighborhood
graph (congraph) of G, denoted by con(G), is the graph with V (con(G)) =

V (G), in which two vertices are adjacent if they have a common neighbor in
G, that is,

xy ∈ E(con(G)) ⇐⇒ N(x) ∩N(y) ̸= ∅ where x, y ∈ V (G).

The basic concept of congraphs came from the theory of graph energy [1, 10],
and some basic properties of congraphs have been obtained [1, 3, 9].

There are several Graph operations which generate new graphs from old
ones.

Definition 1.1. Let G1 and G2 be two graphs.
(1) Graph intersection operation of G1 and G2, denoted by G1 ∩ G2, is a

graph with V (G1 ∩G2) = V (G1) ∩ V (G2) and E(G1 ∩G2) = E(G1) ∩
E(G2) [2].

(2) Graph union operation of G1 and G2, denoted by G1 ∪G2, is a graph
with V (G1 ∪G2) = V (G1)∪ V (G2) and E(G1 ∪G2) = E(G1)∪E(G2)

[2].
(3) Graph cartesian product of G1 and G2, denoted by G1×G2, is a graph

with V (G1 ×G2) = V (G1)× V (G2) and (u, v)(u′, v′) ∈ E(G1 ×G2) if
u = u′, then vv′ ∈ E(G2) or if v = v′, then uu′ ∈ E(G1) [8].

(4) Graph tensor product of G1 and G2, denoted by G1 ⊗ G2, is a graph
with the vertex-set V (G1)×V (G2). For u, v ∈ V (G1) and x, y ∈ V (G2),
(u, x) is adjacent to (v, y) in G1 ⊗ G2 if uv ∈ E(G1) and xy ∈ E(G2)

[15].
(5) If V (G1) ∩ V (G2) = ∅, graph join operation of G1 and G2, denoted by

G1 + G2, is a graph with V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 +

G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)} [8].

Let G be a non-trivial group and let S be a subset of G − {e} with S =

S−1 := {s−1|s ∈ S}. The Cayley graph of G denoted by Cay(G : S) is a
graph with vertex set G and two vertices a and b are adjacent if ab−1 ∈ S. The
study of Cayley graphs of the symmetric group generated by transpositions is
interesting (See [7]).
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Cayley graphs of finitely generated groups are a fundamental concept in
group theory. They were introduced by Cayley [4] for finite groups and Dehn
[5] for infinite groups. Many deep results in group theory use Cayley graphs in
an essential way, see e.g. [6, 11, 12, 14]. Moreover, Cayley graphs turned out
to be a link to several other fields in mathematics and theoretical computer
science, e.g., automata theory, topology, and graph theory.

This paper is organized as follows: in section 2, we obtain some properties of
congraphs under graph operations; Graph join, Graph union, Graph cartesian
product, and Graph tensor product and in section 3, we give some relations
between Cayley graphs and its congraphs.

2. Characteristics of Congraph on Graph Operations

Lemma 2.1. Let G(V,E) be a simple graph with n vertices and m edges. In
the common neighborhood graph (congraph) of G, for every v ∈ V we have:

(1) degcon(G)(v) = | ∪u∈N(v) N(u) − {v}| = |Ncon(G)(v)|. Also, if N(u) ∩
N(w) = {v} then for every u,w ∈ N(v), we have degcon(G)(v) +

degG(v) =
∑

ui∈N(v) degG(ui).

(2) For every u, v ∈ V (G), if deg(u) + deg(v) > n, then con(G) = Kn.

Proof. (1)

u ∈ Ncon(G)(v) ⇐⇒ uv ∈ E(con(G))

⇐⇒ N(u) ∩N(v) ̸= ∅ hence there exists a ∈ N(v) and a ∈ N(u)

⇐⇒ a ∈ N(v) and u ∈ N(a).

That is Ncon(G)(v) = ∪u∈N(v)N(u)− {v}.
Hence,

degcon(G)(v) = | ∪ui∈N(v) N(ui)− {v}|
= | ∪ui∈N(v) (N(ui)− {v})|

=
∑

ui∈N(v)

|N(ui)− {v}|

=
∑

ui∈N(v)

(|N(ui)| − 1)

=
∑

ui∈N(v)

degG(ui)− |N(v)|

=
∑

ui∈N(v)

degG(ui)− degG(v).

Therefore, degcon(G)(v) + degG(v) =
∑

ui∈N(v) degG(ui).
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(2) It is enough to show that for every u, v ∈ V we have N(u)∩N(v) ̸= ∅.
Otherwise, we have

n ≥ |N(u) ∪N(v)| = |N(u)|+ |N(v)| = deg(u) + deg(v) > n,

which is a contradiction. Hence, it follows that uv ∈ E(con(G)), that
is, con(G) = Kn.

□

Corollary 2.2. Let G(V,E) be a graph with n vertices and m edges and have
not any cycle of order 4. Also, let con(G) be a graph with n vertices and m′

edges the congraph of G. Then,

m′ =
1

2
M1(G)−m,

where M1(G) stands for the first Zagreb index, defined as M1(G) =
∑

vi∈V deg2(vi)

Proof. For every u,w ∈ N(v) we have v ∈ N(u) ∩ N(w). Now, we show that
N(u) ∩ N(w) = {v}. For, if there exist a ∈ N(u) ∩ N(w) such that a ̸= v, it
follows that au, vu, aw, vw ∈ E(G), that is, we have a cycle of order 4, which
is a contradiction. Hence, by Lemma 2.1 we have degcon(G)(vi) + degG(vi) =∑

uj∈N(vi)
degG(uj). Thus,∑

vi∈V

degcon(G)(vi) +
∑
vi∈V

degG(vi) =
∑
vi∈V

∑
uj∈N(vi)

degG(uj),

it follows that
2m′ + 2m =

∑
vi∈V

deg2(vi).

Therefore,
m′ =

1

2

∑
vi∈V

deg2(vi)−m =
1

2
M1(G)−m.

□

Theorem 2.3. Let G1 and G2 be two graphs of order n and m respectively. If
G1 or G2 is connected then con(G1 +G2) = Kn+m.

Proof. Let x, y ∈ V1 ∪ V2 then we show that xy ∈ E(con(G1 + G2)), that is,
NG1+G2(x) ∩ NG1+G2(y) ̸= ∅. For, if x, y ∈ V1 then it is easy to see that
(NG1

(x)∪V2)∩ (NG1
(y)∪V2) ̸= ∅. Similarly, if x, y ∈ V2 then (NG2

(x)∪V1)∩
(NG2

(y) ∪ V1) ̸= ∅. Now, if x ∈ V1 and y ∈ V2 then (NG1
(x) ∪ V2) ∩ (NG2

(y) ∪
V1) ̸= ∅, since at least one of G1 or G2 is connected. Therefore, for every
x, y ∈ V1∪V2 we have xy ∈ E(con(G1+G2)), hence con(G1+G2) = Kn+m. □
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Theorem 2.4. Let G1 and G2 be two graphs. Then con(G1⊗G2) = (con(G1)×
con(G2)) ∪ (con(G1)⊗ con(G2)).

Proof. Let (x, y), (u, v) ∈ V (G1 ⊗G2). If (x, y)(u, v) ∈ E(con(G1 ⊗G2)) then
NG1⊗G2

(x, y) ∩NG1⊗G2
(u, v) ̸= ∅.

∅ ̸= NG1⊗G2
(x, y) ∩NG1⊗G2

(u, v) = (NG1
(x)×NG2

(y)) ∩ (NG1
(u)×NG2

(v))

= (NG1(x) ∩NG1(u))× (NG2(y) ∩NG2(v)),

i.e.

NG1
(x) ∩NG1

(u) ̸= ∅ ∧ y = v or NG2
(y) ∩NG2

(v) ̸= ∅ ∧ x = u

or NG1(x) ∩NG1(u) ̸= ∅ ∧NG2(y) ∩NG2(v) ̸= ∅.

Hence,

xu ∈ E(con(G1)), y = v or yv ∈ E(con(G2)), x = u or xu ∈ E(con(G1)), yv ∈ E(con(G2))

which means

(x, y)(u, v) ∈ E(con(G1)× con(G2)) or (x, y)(u, v) ∈ E(con(G1)⊗ con(G2)).

Therefore,

con(G1 ⊗G2) = (con(G1)× con(G2)) ∪ (con(G1)⊗ con(G2)).

□

Theorem 2.5. Let G1 and G2 be two graphs. Then con(G1×G2) = (con(G1)×
con(G2)) ∪ (G1 ⊗G2).

Proof. Let (x, y), (u, v) ∈ V (G1 ×G2). Then

(x, y)(u, v) ∈ E(con(G1 ×G2))

⇐⇒ NG1×G2(x, y) ∩NG1×G2(u, v) ̸= ∅
⇐⇒ {(x×NG2

(y)) ∪ (NG1
(x)× y)} ∩ {(u×NG2

(v)) ∪ (NG1
(u)× v)} ̸= ∅.

Therefore,

(x×NG2
(y)) ∩ (u×NG2

(v)) ∪ (x×NG2
(y)) ∩ (NG1

(u)× v)

∪ (NG1
(x)× y) ∩ (u×NG2

(v)) ∪ (NG1
(x)× y) ∩ (NG1

(u)× v) ̸= ∅.
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Hence,

(x×NG2
(y)) ∩ (u×NG2

(v)) ̸= ∅
⇐⇒ x = u ∧NG2(y) ∩NG2(v) ̸= ∅ ⇐⇒ x = u ∧ yv ∈ E(con(G2))

or

⇐⇒ (x×NG2
(y)) ∩ (NG1

(u)× v) ̸= ∅
⇐⇒ x ∈ NG1

(u) ∧ v ∈ NG2
(v) ̸= ∅ ⇐⇒ xu ∈ E(G1) ∧ yv ∈ E(G2)

or

⇐⇒ (NG1(x)× y) ∩ (u×NG2(v)) ̸= ∅
⇐⇒ u ∈ NG1

(x)× y ∈ NG2
(v) ⇐⇒ xu ∈ E(G1), yv ∈ E(G2)

or

⇐⇒ (NG1
(x)× y) ∩ (NG1

(u)× v) ̸= ∅
⇐⇒ y = v ∧NG1(u) ∩NG1(x) ̸= ∅ ⇐⇒ y = v, xu ∈ E(con(G1))

Therefore, for every condition we get:

(x, y)(u, v) ∈ E[con(G1)× con(G2)] or (x, v)(y, v) ∈ E(G1 ⊗G2)

⇐⇒ (x, y)(u, v) ∈ E[con(G1)× con(G2) ∪ E(G1 ⊗G2)].

□

3. Relations Between Cayley Graph and its Congraph

Let Cay(G : S) be a Cayley graph. Then,

N(e) = {x ∈ G | {x, e} = xe ∈ E}
= {x ∈ G | xe−1 = x ∈ S} = S.

Thus, deg(e) = |N(e)| = |S|. It is easy to see that N(x) = N(e) · x = S · x for
each x ∈ G.

Theorem 3.1. [13][Theorem 2.4.] If Cay(G : S1) and Cay(G : S2) are Cayley
graphs. Then

(1) Cay(G : S1) ∪ Cay(G : S2) = Cay(G : S1 ∪ S2),
(2) Cay(G : S1) ∩ Cay(G : S2) = Cay(G : S1 ∩ S2).

Lemma 3.2. Let Cay(G : S) be a Cayley graph. Then

con(Cay(G : S)) = Cay(G : S2 − {e}).
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Proof. Let Γ(V,E) = con(Cay(G : S)), Γ′(V ′, E′) = Cay(G : S2 − {e}). It is
obvious that V = V ′. Let x, y ∈ V , then

xy ∈ E ⇐⇒ NCay(G:S)(x) ∩NCay(G:S)(y) ̸= ∅ ⇐⇒ (Sx) ∩ (Sy) ̸= ∅
⇐⇒ there exists a ∈ (Sx) ∩ (Sy) ⇐⇒ a = s1x and a = s2y

⇐⇒ s1x = s2y ⇐⇒ e ̸= xy−1 = s−1
1 s2 ∈ S−1 · S = S · S = S2

⇐⇒ xy ∈ E′,

for some s1, s2 ∈ S. □

By Lemma 3.2 we have the following corollary.

Corollary 3.3. Let Cay(G : S) be a Cayley graph. Then

con(con(Cay(G : S))) = Cay(G : S4 − {e}).

In general, we know that con(G1∪G2) ̸= con(G1)∪con(G2) and also con(G1∩
G2) ̸= con(G1) ∩ con(G2). But in the following theorem, we show that the
equalities hold for a special condition.

Theorem 3.4. Let G1 = Cay(G : S1) and G2 = Cay(G : S2) be two Cayley
graphs such that (S1 ∪ S2)

2 − {e} = (S2
1 − {e}) ∪ (S2

2 − {e}). Then

con(G1 ∪G2) = con(G1) ∪ con(G2).

Also, if (S1 ∩ S2)
2 − {e} = (S2

1 − {e}) ∩ (S2
2 − {e}), then

con(G1 ∩G2) = con(G1) ∩ con(G2).

Proof. By Lemma 3.2 and Theorem 3.1 we have:

con(G1 ∪G2) = con(Cay(G : S1) ∪ Cay(G : S2))

= con(Cay(G : S1 ∪ S2))

= Cay(G : (S1 ∪ S2)
2 − {e})

= Cay(G : (S2
1 − {e}) ∪ (S2

2 − {e}))
= Cay(G : S2

1 − {e}) ∪ Cay(G : S2
2 − {e})

= con(Cay(G : S1)) ∪ con(Cay(G : S2))

= con(G1) ∪ con(G2).
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Also, by Lemma 3.2 and Theorem 3.1 we have:

con(G1 ∩G2) = con(Cay(G : S1) ∩ cay(G,S2))

= con(Cay(G : S1 ∩ S2))

= Cay(G : (S1 ∩ S2)
2 − {e})

= Cay(G : (S2
1 − {e}) ∩ (S2

2 − {e}))
= Cay(G : S2

1 − {e}) ∩ Cay(G : S2
2 − {e})

= con(Cay(G : S1)) ∩ con(Cay(G : S2))

= con(G1) ∩ con(G2).

□
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